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Abstract. We show that the Lorentz integral transform (LIT) technique which has been successfully ap-
plied to photoreactions in light nuclei can also be applied to photoreactions involving particle production.
A simple model where results are easily calculable in the traditional fashion is used to test the tech-
nique. Specifically, we compute inclusive π+ photoproduction from deuterium for photon energies less than
200 MeV using a Yamaguchi model for the NN interaction. It is demonstrated that, although the response
functions for inclusive meson production do not have favourable asymptotic behavior, one can nonetheless
extract them by inversion of the transform. The implication is that one can treat realistic problems of
photo-meson production, including all final-state interactions, by means of the LIT technique.

PACS. 13.60.Le Meson production – 21.45.+v Few-body systems – 25.10.+s Nuclear reactions involving
few-nucleon systems – 25.20.Lj Photoproduction reactions

1 Introduction

In a series of papers [1–7] it has been demonstrated that
the LIT technique allows a convenient calculation of inclu-
sive photoreaction cross-sections wherein final-state inter-
actions are fully included. Further, the technique has been
extended [8,9] to exclusive reactions. A merit of the tech-
nique is that the calculation of continuum wave functions
is avoided. In fact the differential equations to be solved
are inhomogeneous and have solutions bounded at infinity.
The work cited above is based on non-relativistic quantum
mechanics and a nucleons-only subspace.

In order to treat meson photoproduction from nuclei it
is desirable to see if the LIT technique can be extended to
a larger subspace, i.e. one including nucleons and mesons.
This would enable the full inclusion of both meson-nucleon
and NN interactions in the production calculations. As a
test we consider inclusive photoproduction of low-energy
(< 40 MeV) π+-mesons from deuterium. A traditional
calculation of this process was reported by Dressler, Mac-
Donald, and O’Connell [10], and by Gupta, Anand, and
Bhasin [11]. Both of these groups employed a simple Ya-
maguchi potential [12] with parameters chosen to account
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for deuteron binding and low-energy NN scattering prop-
erties. We adopt this model with the parameters used
in [10]. Thus, this example attempts to apply the LIT tech-
nique in the NNπ subspace, where, for simplicity, only an
NN interaction is included. Although no π-N scattering
is contained in this model, this is not essential for testing
the method. Our results will show that it is indeed possible
to apply the LIT method to this problem and to extract
the total photoproduction cross-section. We should point
out that our restriction to a simple NN potential for this
test calculation does not modify these conclusions. This is
clearly seen from the series of papers [1–7] where a range
of NN potentials, from simple phenomenological models
to modern realistic potentials, have been used in 3-nucleon
and 4-nucleon problems. In no case did the complexity of
the NN potential model have any effect on the accuracy
or implementation of the LIT technique. With assurance
that the formalism works, the addition of a meson-nucleon
interaction can be viewed as a technical point, the conse-
quence of which would be more complicated numerics.

Low-energy photoproduction is described by the Kroll-
Ruderman [13] operator

Hint(x) = −i e
(
f

mπ

)

×
∑

j

ε̂λ · 
σ(j) τ−(j) e−i k·x φ+(x) δ(
x− 
xj) , (1)
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where 
k and ε̂λ denote the incident photon momentum
and polarization vectors, respectively, and φ+(x) denotes
the meson field operator

φ+(x) =
1√
8π3

×
∫

d3q
1√
2q0

[
eiq·x a†+(
q ) + e−iq·x a−(
q )

]
(2)

with q0 the energy of the meson and a† and a are the usual
creation and annihilation operators. Here, e is the positive
elementary charge,mπ is the π+-meson mass, f is the π-N
coupling constant, 
σ denotes the Pauli spin matrix vector
and τ− the isospin operator. Dressler et al. [10] show that
the KR term gives nearly the entire cross-section for pion
energies in the range considered here. Due to cancellations,
other terms in the production operator, i.e. terms required
by gauge invariance, do not contribute significantly at low
pion energies. With Ecm as the incident c.m. energy, the
response function R(Ecm) for this process is

R(Ecm) =
1
6

∑
Md,λ

∑
f

∣∣∣〈 f | Õ(
k, λ) |D,Md 〉
∣∣∣2

× δ(Ecm − Ef ) , (3)

where |D,Md 〉 denotes the deuteron ground state with
polarization Md and

Õ(
k, λ) =
∫

d3q O(
k, λ, 
q ) a†+(
q ) (4)

with

O(
k, λ, 
q ) = −i e
(
f

mπ

)
1√
8π3

1√
2q0

×
∑

j

ε̂λ · 
σ(j) τ−(j) ei �xj ·(�k−�q ) . (5)

In eq. (3) above | f 〉 denotes the wave function of the
relative motion of the nnπ+ system with energy Ef , and∑
f

indicates an integration over all relative momenta and

a sum over all final nucleon spins. The inclusive cross-
section is related to R(Ecm) by

σ(Ecm) =
2π2

k
R(Ecm) . (6)

Relative momenta in the final state are taken as


px = (
p1 − 
p2)/2 , (7)


py = −mπ

M
(
p1 + 
p2) +

2mn

M

pπ , (8)

where 
p1, 
p2, and 
pπ are the momenta of the final-state
neutrons and pion, respectively, and M is the total mass
2mn +mπ with the mass of the neutron mn. As implied
by this separation, we are restricting ourselves to non-
relativistic kinematics for both the nucleons and the pion.
This allows the separation of the Hamiltonian into Jacobi

coordinates for the NNπ three-body system. In terms of
these quantities, the energy-conserving δ-function appear-
ing in R(Ecm) takes the detailed form

δ(Ecm − Ef ) = δ

(
Ecm − (2mn +mπ) − p2

x

mn
− p2

y

2µ

)
,

(9)
where µ is the reduced two-neutron-pion mass. Finally, it
is more convenient to use the c.m. energy above threshold

W = k +
k2

2md
− (2mn +mπ −md) ≥ 0 ,

wheremd is the mass of the deuteron. The LIT, referred to
hereafter as the transform, of the response function R(W)
is then defined with σR, σI > 0 as

L(σR, σI) =
∫ ∞

0

dW R(W)
(W − σR)2 + σ2

I

(10)

=
1
6

∑
Md,λ

∫ ∞

0

dW 〈D,Md | Õ†(
k, λ)

× δ(W −H)
(H − σR)2 + σ2

I

Õ(
k, λ) |D,Md 〉. (11)

Because of the relation of k to W, a straightforward in-
tegration of the above equation would leave the operator
Õ(
k, λ) depending in a complicated way on the Hamilto-
nian H. Therefore, we proceed by setting 
k appearing in
the operator Õ to a constant arbitrarily chosen “pseudo-
momentum” 
kp. As a result, we introduce a new trans-
form, Lkp , which depends on kp and takes the form

Lkp(σR, σI) =
1
6

∑
Md,λ

〈D,Md | Õ†(
kp, λ)

× 1
(H − σR)2 + σ2

I

Õ(
kp, λ) |D,Md 〉 (12)

=
1
6

∑
Md,λ

〈 ψ̃Md,λ(σR, σI , kp) | ψ̃Md,λ(σR, σI , kp) 〉 , (13)

where the Lorentz function ψ̃ is solution of the inhomoge-
neous equation

(H − σR + iσI) | ψ̃Md,λ(σR, σI , kp) 〉 = Õ(
kp, λ) |D,Md 〉
(14)

with

〈 
px, 
py |H | 
p ′
x , 
p

′
y 〉 =[(

p2
x

mn
+
p2

y

2µ

)
δ(
px−
p ′

x ) + V (
px, 
p
′

x )

]
δ(
py − 
p ′

y ). (15)

The inverse to the transform Lkp(σR, σI) will lead to a
corresponding response function Rkp(W) and in turn will
yield the correct cross-section for kp = k. Consequently,
for each photon energy the calculation of the transform
and its inversion must be repeated.
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Fig. 1. Lkp(σR, σI) (solid line) and Rkp(W) (dashed line)
shown for σI = kp = 10 MeV.

As mentioned earlier, the simple model here only in-
cludes an NN potential, i.e., V (
px, 
p

′
x ). The kinetic en-

ergy of the meson with respect to the nn pair appears
in H as the term proportional to p2

y. Meson rescattering
could be included by adding to H appropriate potentials.
Although that would considerably complicate the numer-
ical aspect, it would not affect the question posed here,
namely: can the LIT be inverted when the response func-
tion arises from a particle production process? A problem
is the slow fall-off of the response function for high W
values. From the definition of the transform it is clear
that the response must behave asymptotically like W1−x,
where x > 0 in order for the integral to converge. In the
case of nuclear photoabsorption without pion production,
the response function falls off very rapidly for increasing
W resulting in L(σR, σI) also falling rapidly for large σR.
Inversion then gives an accurate account of R(W) over its
entire range by calculating L(σR, σI) for a finite number of
σR values. That the response function for inclusive photo-
production may have a significantly different asymptotic
behavior can be seen from the basic Kroll-Rudermann [13]
cross-section for p(γ, π+)n:

σ = 2α
(
f

mπ

) ( q
k

) En(q)Ep(k)
E2

cm

, (16)

where EN are the nucleon energies, Ecm is the c.m. en-
ergy k + Ep(k) and α the fine-structure constant. This
cross-section approaches a constant for large Ecm and the
response R(Ecm) rises linearly in Ecm. In the next section
it will be seen that the pion production response function
for a finite nucleus is tempered at large Ecm by structure
effects. Nevertheless it still rises over a large energy region
thereby requiring a different approach for the inversion of
the transform.

2 Results

Details of the model and the parameters used are
given in the appendix. There, it is seen that the vec-
tor | ψ̃Md,λ(σR, σI , kp) 〉 can also be labeled by the final

Fig. 2. Relative error of the fit Lfit
kp(σR, σI) compared to the

computed transform Lkp(σR, σI). Here we have used σI = kp =
10 MeV for illustration.

neutron-neutron spin and that the response function is
therefore a sum of singlet and triplet contributions. The
separable potential used here only has scattering in the
spin S = 0, isospin T = 1 channel, while the S = 1,
T = 1 final state consisting of odd partial waves is non-
interacting. Figure 1 shows the transform Lkp(σR, σI) for
the case σI = kp = 10 MeV. One notes that Lkp reaches
a maximum at σR ≈ 200 MeV and then falls very slowly
with increasing σR. Also shown in this figure is the re-
sponse function Rkp(W) for kp = 10MeV. The response
function behaves similarly to L as one would expect, since
L(σR, σI) samples R mainly from a region centered at
W = σR. We note that Rkp(W) does not rise linearly
with energy as in the case of p(γ, π+)n but falls off slowly
with energy after reaching a maximum. Unfortunately, the
fall-off of L with σR is so slow and covers such a large
energy range that inverting it to obtain R(W) over the
full range, as was possible in the earlier photoabsorption
calculations, is not only very difficult but largely physi-
cally meaningless, because our model is only valid for non-
relativistic mesons. In fact the present model is only sensi-
ble for energies W not exceeding approximately 40 MeV,
which corresponds to the maximal pion energy still being
non-relativistic. Our aim then is to calculate L only for the
segment 0 ≤ σR ≤ 40 MeV and then invert it to extract
Rkp(W) for W in the same energy range. Since R can be
calculated directly, the error can be easily assessed.

The inversion process we use has already been de-
scribed in [3] but a brief account is as follows. The response
function Rkp(W) is written as a sum:

Rkp(W) =
N∑

i=1

αi WS+2 e−βiW ≡
N∑

i=1

Ri
kp

(W) (17)

and the parameters αi and βi are determined by fitting

Lfit
kp

(σR, σI) =
N∑

i=1

∫ ∞

0

dW
Ri

kp
(W)

(W − σR)2 + σ2
I

(18)

to L as computed from eqs. (A.12), (A.13) of the ap-
pendix. Note that the threshold behavior WS+2, where
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Fig. 3. Relative error between the response function Rfit
kp(W)

and Rkp(W) computed in the traditional method for σI =
kp = 10 MeV.

S is the total spin, is appropriate to the photoproduc-
tion process [11] and differs slightly from the form used
in the earlier photoabsorption calculations. It turns out,
however, that the quality of the fit is nearly independent
of which threshold behavior is used. Figure 2 shows the
quality of the fit obtained using N = 10. With the pa-
rameters so determined one can calculate the response
functions and finally the inclusive cross-section. As men-
tioned earlier, this model problem is simple enough that
the response functions are easily calculated in the tra-
ditional manner [10,11]. Figure 3 shows the relative er-
ror between the response function as calculated from the
LIT technique (Rfit) and the one calculated in the tra-
ditional manner. Over most of the energy range between
0 ≤ W ≤ 40 MeV, the relative error is in the 1% range.
However, near the threshold, i.e. W < 2 MeV, the re-
sponse function tends to zero for W → 0 and limited nu-
merical accuracy produces an exaggerated relative error
in this region. These effects are too small to be visible in
a plot of the cross-section however. Finally, our computed
cross-section along with data of Booth et al. [14] is shown
in fig. 4. The results of using the LIT technique are in-
distinguishable from the traditional methods in [10,11].

It is instructive to see the differences in the response
functions that occur if one uses transforms calculated in
different ranges of σR. One expects that, because of the
nature of the Lorentz transform, one should only have to
calculate the transform up to σR = 40MeV, as was done
above, if the response function was only required in the
energy range 0 ≤ W ≤ 40 MeV. To show this, we cal-
culate the transform in four ranges, 0 ≤ σR ≤ σRmax ,
where σRmax = 20, 40, 60, and 70 MeV. The respective
response functions obtained by inverting each of these
transforms is denoted by Rkp(W|σRmax). Figure 5 shows
the error in the σRmax = 20, 40, 60 MeV cases rela-
tive to the σRmax = 70 MeV case. One notes that the
σRmax = 20 MeV case only is accurate for energies up to
20 MeV, that the σRmax = 40 MeV case has a less than
1% error at W = 40 MeV, and that the σRmax = 60 MeV
case has only a very small error up to 60 MeV.

Fig. 4. Calculated total cross-section for D(γ, π+)nn shown
together with the data of [14]. The cross-sections calculated
either by the LIT technique or the traditional method [10,11]
are indistinguishable.

Fig. 5. Relative errors in response functions for σI = kp =
10 MeV with respect to the σRmax = 70 MeV case: σRmax =
60 MeV (solid line), σRmax = 40 MeV (long-dashed line),
σRmax = 20 MeV (short-dashed line).

3 Conclusions

We have shown that the LIT technique can be used to
calculate inclusive meson photoproduction cross-sections
in the non-relativistic regime. Rather than fitting the
transform over its entire range, as was possible in earlier
photoabsorption calculations, one fits here only the low-
energy segment to obtain the low-energy response func-
tions. The model calculation used here shows that the
response functions thus obtained are as accurate as nu-
merical techniques will allow. Our next step will be to
add a pion-nucleon interaction to the Hamiltonian in order
to take account of pion scattering effects. The dynamical
model of Darwish, Arenhoevel, and Schwamb [15] would
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provide a benchmark calculation against which to further
check our method. It would also be of interest to apply
these types of calculations to higher-A nuclei such as 3He,
3H, or 4He. The LIT technique extends readily to these
cases as well as being able to handle realistic potentials
including Coulomb effects. One should expect to be able
to study meson rescattering effects with realistic nuclear
models in a variety of light nuclei.

We would like to thank H. Arenhövel for valuable comments.
All authors acknowledge support from the Italian Ministry of
Research (MURST). In addition, the work of C.R. and E.L.T.
is supported by the National Science and Engineering Research
Council of Canada.

Appendix A.

For the NN interaction we use the separable model of
Y. Yamaguchi [12], which is a pure S-wave interaction:

V (
p, 
p ′) = −λ0 g0(
p ) g0(
p ′)
1
4

(1− 
σ1 · 
σ2)

−λ1 g1(
p ) g1(
p ′)
1
4

(3 + 
σ1 · 
σ2) , (A.1)

gS(
p ) =
1


p 2 + β2
S

, S ∈ {0, 1} . (A.2)

Here, the labels 0 and 1 refer to the spin-singlet and spin-
triplet parts, respectively. The following more up-to-date
constants for this model have been taken from [10]:

α=0.2316 fm−1 , β0=1.129 fm−1 , β1=1.392 fm−1 ,
(A.3)

λ0 = 0.02774 fm−2 , λ1 =
β1 (α+ β1)2

mn π2
. (A.4)

These constants fit the deuteron binding energy, the ex-
perimental values for the singlet and triplet scattering
lengths and the singlet effective range.

Using this separable NN interaction, one obtains for
the deuteron ground state

ψd(
p ) =

√
αβ1 (α+ β1)3

π

1
(
p 2 + α2) (
p 2 + β2

1)
(A.5)

and a binding energy of 2.224 MeV.
The Lorentz function ψ̃Md, λ(σ, kp, 
px, 
py) can be de-

composed into its spin components as

ψ̃Md, λ(σ, kp, 
px, 
py) =
∑

S=0,1

ψ̃S
MS

(σ, kp, 
px, 
py) , (A.6)

where MS = Md + λ with Md and λ the deuteron
and photon polarization, respectively, and the function

ψ̃S
MS

(σ, kp, 
px, 
py) is a solution of[
p2

x

mn
+
p2

y

2µ
− σ

]
ψ̃S

MS
(σ, kp, 
px, 
py)

− λS gS(px)CS
MS

(
py, 
∆) =

ΞS
MS ,Md,λ FS

�∆
(
px) , S ∈ {0, 1} , (A.7)

where

CS
MS

(
py, 
∆) =
∫

d3p gS(p) ψ̃S
MS

(σ, kp, 
p, 
py) , (A.8)

FS
�∆
(
p ) = ψd(
p− 
∆) + (−1)Sψd(
p+ 
∆) , (A.9)

ΞS
MS ,Md,λ = −i 3

√
2 e f
mπ

(−1)1+S−MS
√

2S + 1

×
(

S 1 1
−MS λ Md

){
1
2 S

1
2

1 1
2 1

}
. (A.10)

We take f2/4π = 0.078.
The constant CS

MS
(
py, 
∆) with respect to px is

CS
MS

(
py, 
∆) = mnΞ
S
MS ,Md,λ

∫
d3p

gS(p)FS
�∆
(
p )

p2 + γ2 −mn σ

×


1 − mn π

2 λS

βS

(
βS +

√
γ2 −mn σ

)2



−1

(A.11)

with (mn/µ)/2 
p
2
y ≡ γ2(
py). In the case of S = 1 this

constant vanishes.
The solution of the Lorentz equation therefore is

ψ̃S
MS

(σ, kp, 
px, 
py) =

mnΞ
S
MS ,Md,λ FS

�∆
(
px) +mn λS gS(px)CS

MS
(
py, 
∆)

p2
x + γ2 −mn σ

,

(A.12)

and the transform Lkp(σR, σI) is

Lkp(σR, σI) =
1
6

∑
S, Md, λ

〈ψ̃S
MS

| ψ̃S
MS

〉 . (A.13)
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